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The enormous increase in computer power during the recent past has made it possible
for the first time to carry out direct numerical simulation (DNS) of turbulent reacting
flow fields, without the use of a turbulence model. This has opened up a significant
new area of research into the fundamental processes of flame–turbulence interaction
since it is now possible to solve the governing equations in full detail, resolving even
the smallest of the important features of the flow and the flame. In many ways,
the technology of DNS remains in its infancy, and the present work seeks to extend
current methods in order to take advantage of massively parallel supercomputers.
The governing equations are presented and necessary simplifications are justified in
the light of current computational capabilities. A numerical discretization scheme
suitable for parallel implementation is described, and results are presented for a
series of simulations of simple test problems. The relevance of the results is discussed
in the light of current turbulent-combustion modelling, and suggestions are made for
future work.
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1. Introduction

Combustion in practical systems, such as gas turbines, reciprocating engines and
industrial boilers, almost invariably takes place in a turbulent-flow field. In many
cases, the turbulence is deliberately enhanced in order to improve mixing rates and
maximize the rate of reaction, while in other cases, the turbulence is simply a natural
consequence of the geometry and the conditions of the system together with those of
the surrounding environment. It is necessary in all cases to have some understanding
of the interaction of the turbulent-flow field with the flame in order to help control
the rate of heat release, the temperature distribution within the system and the rate
of formation of unwanted emissions such as CO, NOx and particulates.
Unfortunately, the mathematical treatment of turbulence is not sufficiently devel-

oped to enable closed-form solutions to be obtained, even for relatively simple prob-
lems. By contrast, the phenomenology of turbulence is fairly well developed and has
led to a number of modelling approaches that are suitable for use in the context of
computational fluid dynamics (CFD) for quite complex flows. CFD is now widely
used in many industries as part of the design process, despite evidence that the pre-
dictive capability of many standard turbulence models is limited to the class of flows
for which they were validated. The extension of CFD-based modelling to combus-
tion systems is not straightforward due to the added complexities of chemistry and
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heat release, which, in general, must also be modelled, and success in this field has
been far from universal. For many industries, the potential cost savings of CFD as
compared with traditional prototype testing are very large, and there remains an
urgent need for better physical models. This in turn calls for reliable statistical data
for the validation of existing turbulence and turbulent-combustion models, and for
the development of new modelling concepts. The most obvious source of such data
is experiment, and recent developments in laser-based diagnostic techniques have
allowed simultaneous two-dimensional imaging of velocity and scalar fields to a very
high level of detail. The availability of such data is extremely useful in model develop-
ment, but the physical processes of turbulent combustion are fully three dimensional
and time dependent and so the picture remains incomplete.
At the same time, recent advances in computer power have made it possible for the

first time to consider direct numerical simulation (DNS) of turbulent reacting flow.
Following the pioneering work of Riley et al. (1986) in non-premixed combustion, and
of Rutland et al. (1990) in the premixed case, it has become possible to simulate,
in full detail, without any kind of turbulence modelling, the three-dimensional and
time-evolving flow field in a number of simple combustion problems. Naturally, there
is a cost. The absence of turbulence modelling imposes the absolute requirement
that every scale of the turbulent motion be resolved in both space and time. In the
presence of a flame, the smallest scales may well be those of the reaction and diffusion
processes that give the flame its structure, and they too must be resolved. The precise
number of numerical grid points required to achieve adequate physical resolution also
depends on the nature of the spatial discretization scheme in use, while the size of
the problem itself is set by the size and power of the largest available computer. It
can be shown that the storage requirement scales as the Reynolds number raised to
the power 9/4, while the computing effort scales as the Reynolds number raised to
a power of between 3 and 4 depending on the particular time-advancement scheme
in use. These scaling laws remain true even where the resolution requirement is
set by the flame rather than the smallest scales of the turbulence, since the thermal
thickness of the flame may be expressed as a fraction of the Kolmogorov length-scale.
Thus, the need for additional resolution at small scale in order to capture complex
chemical or diffusive structure simply acts as a multiplier on the overall storage
requirement. The introduction of complex chemistry is particularly expensive due to
the need to store additional scalar variables, which, in general, will all require high
resolution. In view of the stiffness introduced by many detailed chemical reaction
schemes, the penalty in terms of computing effort can be especially severe.
In terms of numerical methods, the major challenge is to find a spatial discretiza-

tion scheme that resolves adequately the high-wavenumber components of the solu-
tion without incurring unacceptable computational costs. Fourier spectral methods
are particularly suitable in this regard, but bring severe restrictions on problem for-
mulation due to the need for periodic boundary conditions. Much of the progress that
has been made in combustion DNS has been based on the use of high-accuracy finite-
difference methods (Lele 1992), which allow complete flexibility in the specification
of boundary conditions, for minimal loss of accuracy relative to spectral methods.
Another major contribution has been the development of a general formulation for
Navier–Stokes boundary conditions (Poinsot & Lele 1992) based on analysis of char-
acteristics, and this has been extended to handle combustion problems with complex
chemistry (Baum et al. 1998). Several combustion DNS studies have been carried
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out with objectives specifically related to modelling (Cant et al. 1990; Rutland &
Cant 1994; Alshaalan & Rutland 1998) and improvements to modelling practice have
followed (Bray & Cant 1991; Zhang & Rutland 1995). Other studies have focused
on the flame–turbulence interaction process at the fundamental level (Kollman &
Chen 1998; Echekki & Chen 1996). The field is growing steadily and recent reviews
(Poinsot et al. 1995; Vervisch & Poinsot 1998) provide a useful overview of the cur-
rent state of the art. Clearly, the usefulness of DNS results generally depends, to a
significant extent, on achieving a Reynolds number that is as high as possible, and,
ideally, is comparable with the turbulence Reynolds numbers of practical systems.
Despite all of the improvements in the technology of combustion DNS, this goal is
not yet within reach.
The advent of massively parallel computers is now providing a new impetus to

DNS by offering the possibility for problem size, and, hence, Reynolds number, to be
significantly increased. Algorithm design for the effective use of parallel computers
has become a major research topic in itself, and it is clear that transfer of existing
codes to parallel architectures is not necessarily the most effective approach. The
present work is concerned both with obtaining physically relevant results from com-
bustion DNS and with gaining experience in the development and use of DNS codes
on massively parallel computers. An example of the design compromises that have
been made is in the use of second-order numerical schemes. It is recognized that the
accuracy and resolving power of second-order schemes is limited by comparison with
spectral or other high-order methods, and that more grid points will be necessary to
achieve the same degree of resolution. The advantage is that a simple second-order
scheme is straightforward to implement using a parallel domain-decomposition strat-
egy and is extremely efficient in execution (Bushe et al. 1997; Bushe & Cant 1996).
The present paper is intended to describe recent work in DNS of premixed turbu-

lent combustion, carried out to investigate basic flame–turbulence interactions and to
provide statistical data in support of modelling efforts. The governing equations are
presented and necessary simplifications are discussed. The numerical discretization
and solution schemes are described and their parallel implementation is outlined.
A set of test problems is presented together with the procedure for obtaining solu-
tions. Results of interest in the modelling of turbulent flames are shown and the
implications are discussed in terms of modelling and of future simulation efforts.

2. Governing equations

The equations governing the flow of a compressible reacting gas may be stated in
Cartesian tensor notation as

∂

∂t
ρ+

∂

∂xk
ρuk = 0, (2.1)

∂

∂t
ρui +

∂

∂xk
ρukui = − ∂

∂xi
P +

∂

∂xk
τki, (2.2)

∂

∂t
ρE +

∂

∂xk
ρukE = − ∂

∂xk
ukP +

∂

∂xi
ukτki − ∂

∂xk
qk, (2.3)

∂

∂t
ρYα +

∂

∂xk
ρukYα = wα − ∂

∂xk
ρVαkYα, α = 1, . . . , N, (2.4)
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where ρ is the density, ui is the velocity vector, P is the pressure, E is the stagnation
internal energy, and Yα is the mass fraction of species α in the reacting mixture that
contains N species in total. The viscous stress tensor τki is given by

τki = µ
(
∂uk

∂xi
+
∂ui

∂xk

)
− 2

3µ
∂um

∂xm
δki, (2.5)

where µ is the viscosity, and the heat flux vector qk is given by

qk = −λ ∂T
∂xk

+ ρ
N∑

α=1

hαVαkYα,

where λ is the thermal conductivity, T is the temperature, hα is the enthalpy of
species α, and Vαk is the diffusion velocity of species α relative to the mixture. The
chemical reaction rate for species α is given by

wα =Wα

M∑
m=1

[
(ν′′

α,m − ν′
α,m)AmT

nm exp
(

− Em

R0T

) N∏
β=1

(
ρYβ

Wβ

)ν′
β,m

]
,

for a reaction mechanism involving N species and M steps, where Wα is the molar
mass of species α and R0 is the universal gas constant. For step m, ν′

α,m and ν′′
α,m

are, respectively, the reactant and product stoichiometric coefficients, while Am, nm

and Em are, respectively, the frequency factor, temperature exponent and activation
energy. The compatibility condition on the species mass fractions is

N∑
α=1

Yα = 1.

The thermal equation of state is

P = ρR0T
N∑

α=1

Yα

Wα
,

and the caloric equation of state is

E = CVT + 1
2ukuk +

N∑
α=1

h0
αYα,

where CV is the mixture specific heat capacity at constant volume and h0
α is the

enthalpy of formation of species α.
In order to make the governing equations tractable even for DNS, it is necessary

to introduce some simplifications. The computational cost of resolving both the tur-
bulence and the chemistry in three dimensions is simply too great for present-day
computers and a compromise must be made. If a comprehensive chemical treat-
ment is required, then the problem must be reduced to two dimensions, with the
loss of important dynamical information about the turbulent field. For present pur-
poses, the turbulent-flow field is regarded as paramount and its representation in
three dimensions must take precedence over a detailed representation of the chem-
istry. Thus, while the simulation of the turbulence is indeed direct, the chemical
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treatment is reduced to a minimum necessary to capture the basic features of the
flame–turbulence interaction.
To this end, a one-step irreversible reaction is assumed

R → P,

and a reaction-progress variable is defined based on the mass fraction of the product
species

c =
YP − YP0

YP∞ − YP0
.

The reaction rate for the one-step reaction is governed by a simplified Arrhenius rate
law

w = Bρ(1 − c) exp
(

− E

R0T

)
,

where B is the pre-exponential factor and E is the activation energy. In addition, a
Fickian diffusion law is assumed to be applicable,

ρVckc = −ρD ∂c

∂xk
,

where the single diffusion coefficient D is a known function of the local thermo-
chemical state. The purpose of the simplified chemical treatment is to enable the
replacement of the N − 1 conservation equations for the species mass fraction equa-
tions by a single conservation equation for the reaction-progress variable:

∂

∂t
ρc+

∂

∂xk
ρukc = w +

∂

∂xk
ρD

∂c

∂xk
. (2.6)

The simplified form of the equations of state are

P = ρRT, (2.7)

E = CVT + 1
2ukuk +H(1 − c), (2.8)

where H is the heat of reaction per unit mass of reactants consumed. The heat flux
vector simplifies to

qk = −λ ∂T
∂xk

− ∂

∂xk
ρDH

∂c

∂xk
.

The equations are non-dimensionalized using a set of standard values of the principal
variables, namely u0, l0, t0 = l0/u0, ρ0 and T0. In addition, standard values of the
transport coefficients µ0, λ0, D0 and CV0 are chosen. The normalizing pressure P0 is
chosen to be representative of dynamic rather than thermochemical effects and the
relation P0 = ρ0u

2
0 is employed. The temperature is non-dimensionalized according

to

T =
T̂ − T0

Tad − T0
,

where T̂ denotes the instantaneous dimensional value, T0 is the initial temperature,
and Tad is the adiabatic flame temperature, given by Tad = T0 +H/CP0. This form
makes the non-dimensional temperature lie between zero and unity for adiabatic
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combustion, but these bounds may be exceeded due to other effects such as com-
pression or external heating. The internal energy is non-dimensionalized with respect
to CP0T0.
With all variables now assumed to be in non-dimensional form, the governing

equations become

∂

∂t
ρ+

∂

∂xk
ρuk = 0, (2.9)

∂

∂t
ρui +

∂

∂xk
ρukui = − ∂

∂xi
P +

1
Re

∂

∂xk
τki, (2.10)

∂

∂t
ρE +

∂

∂xk
ρukE = −(γ − 1)M2 ∂

∂xk
ukP + (γ − 1)

M2

Re

∂

∂xi
ukτki

+
τH
RePr

∂

∂xk
λ
∂T

∂xk
+

τH
ReSc

∂

∂xk
ρD

∂c

∂xk
, (2.11)

∂

∂t
ρc+

∂

∂xk
ρukc = w +

1
ReSc

∂

∂xk
ρD

∂c

∂xk
, (2.12)

where the viscous stress tensor τki remains unchanged in form from (2.5), and the
chemical reaction rate is given by

w = B∗ρ(1 − c) exp
(

− β(1 − T )
1 − α(1 − T )

)
.

The non-dimensional equations of state are

P =
1

γM2 ρ(1 + τHT ), (2.13)

E =
1
τH

(1 + τHT ) + 1
2(γ − 1)M2ukuk + τH(1 − c). (2.14)

The main non-dimensional parameters appearing in these equations are the Rey-
nolds number Re, the Prandtl number Pr, the Schmidt number Sc, and the Mach
number M, defined, respectively, by

Re =
ρ0u0l0
µ0

, Pr =
µ0CP0

λ0
, Sc =

µ0

ρ0D0
, M =

u0

a0
,

where the speed of sound, a0, is given by a0 =
√
γRT0. The ratio of specific heats

γ, the heat release parameters τH and α, the Zeldovich number β, and the pre-
exponential factor B∗ are given by

γ =
CP0

CV0
, τH =

α

1 − α =
Tad − T0

T0
,

β =
E(Tad − T0)
R0T 2

ad
, B∗ =

B

ρ0u0
exp

(
−β
α

)
.

A final level of approximation is introduced by assuming that the Mach number is
negligibly small. Substituting the caloric equation of state into the energy equation
yields an equation for the temperature in the limit of low Mach number,

∂

∂t
ρT +

∂

∂xk
ρukT =

1
RePr

∂

∂xk
λ
∂T

∂xk
+ w, (2.15)

Phil. Trans. R. Soc. Lond. A (1999)



Numerical simulation of premixed turbulent flames 3589

where CV is assumed constant. The pressure may be split formally into thermochem-
ical and dynamic components leading to the low-Mach-number form of the thermal
equation of state:

ρ =
1

1 + τHT
. (2.16)

The formulation is completed by choosing values for the key dimensional quantities.
The velocity u0 is set equal to the planar unstrained laminar-flame speed ul, and
the length-scale l0 is set such that the dimensionless domain size is unity. Then
the non-dimensionalizing time-scale t0 becomes equal to the laminar-flame passage
time τ , i.e. the time taken for the laminar flame to pass completely through the
computational box. All of the other dimensional quantities, ρ0, T0, µ0, λ0, D0 and
CV0, are set to values appropriate to the reactant mixture.

3. Discretization

The non-dimensional governing equations are discretized in space using the classical
second-order central difference method due to Harlow & Welch (1965). This method
has adequate accuracy for a well-resolved combustion DNS, where the small-scale
activity is dominated by chemistry and natural diffusion, and the smallest scales of
turbulence are an order of magnitude larger than the computational grid spacing. The
second-order scheme is simple to implement, is computationally efficient in terms of
both CPU time and memory usage, and is easily adapted for use on massively parallel
computers. A further advantage is that the scheme naturally conserves kinetic energy
as well as momentum. This property is particularly useful in DNS computations and
is discussed by Orszag (1969), who gives a proof for the present scheme.
The general form of the conservation equations is given by

∂ρφ

∂t
= Sφ +

∂

∂xk

[
Γφ
∂φ

∂xk
− ρukφ

]
, (3.1)

where φ is one of u, v, w, T or c, Γφ is the appropriate diffusivity, and Sφ is a
generalized source term containing all other terms in the equation for φ. Integrating
(3.1) over a small cuboidal cell of volume dV yields

∫
V

∂ρφ

∂t
dV = S̄φ +

∑
x,y,z

[(
Γφ
∂φ

∂xk
− ρukφ

)
A

]+

−
,

where S̄φ is the volume integral of the source term and the term in square brackets
represents the surface integral over the cell face area, A, of the convective and diffusive
fluxes across each face of the cuboid. It is necessary to find a numerical approximation
to each of the convective and diffusive flux terms, and this is done with the aid of
a simple staggered grid arrangement. All scalar quantities are assumed to be stored
at cell centres, while each velocity component is assumed to be stored at the centre
of the appropriate cell face. Using central differencing and local averaging between
adjacent points, a uniformly second-order accurate scheme is generated that uses
only nearest-neighbour points, and, hence, is ideally suited to a parallel domain-
decomposition strategy. Evaluation of the source term S̄φ is straightforward, since
second-order accuracy is achieved simply by setting S̄φ = SφV .
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Temporal discretization makes use of the explicit second-order Adams–Bashforth
method coupled to a velocity projection algorithm described by Gavrilakis et al.
(1985). The general form of the spatially discretized conservation equations is now

∂

∂t
(ρφ)V = S̄φ +H(φ),

where H(φ) contains the discretized convective and diffusive fluxes. According to the
Adams–Bashforth scheme this becomes

[(ρφ)n+1 − (ρφ)n]
V

δt
= 3

2(H
n(φ) + S̄n

φ) − 1
2(H

n−1(φ) + S̄n−1
φ ),

where the superscripts indicate the time level at which each term is evaluated. A
single explicit step is sufficient for time advancement of the scalar variables, but
time advancement of the velocity components also requires the satisfaction of the
continuity constraint. This is achieved by projecting the velocity components, u,
v, w, to an intermediate pseudo-time level. Dropping the overbars for clarity, the
equation for the u velocity component may be written

[(ρu)∗ − (ρu)n]
V

δt
= 3

2(H
n(u) + Ŝn

u ) − 1
2(H

n−1(u) + Sn−1
u ),

where the modified source term, Ŝn
u , does not include the pressure gradient contri-

bution, i.e.
Ŝn

u = Sn
u − (∇xP )nV,

where the pressure gradient term is given by

∇xP =
Pi+1,j,k − Pi,j,k

δx
.

Expressions for the v and w components follow in the obvious manner. The time
advancement of the u velocity component is completed using

[(ρu)n+1 − (ρu)∗]
V

δt
= −3

2(∇xP )nV,

where the pressure has been computed from the discrete Poisson equation

(∇2P )n = 2
3
1
δt
(divM∗ − divMn+1), (3.2)

in which divM is the discrete mass flux divergence across the computational cell.
This is a classical projection method, and, despite the operator-splitting step, the
overall method may be shown to be second-order accurate in time.
Note that, in the case of constant-density flow, the mass flux divergence at each

true time level is identically zero, whereas the mass flux divergence at the pseudo-time
level in general is non-zero, since continuity has not been enforced. For combustion
problems involving heat release, the mass flux divergence is generally non-zero even
at real time levels due to thermal expansion. This is accounted for by using the full
continuity equation in the form

(ρn+1 − ρn)
V

δt
+ 1

2(divM
n+1 + divMn) = 0,
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which corresponds to a second-order Crank–Nicholson discretization in time. Sub-
stituting this equation into (3.2) yields the full variable-density form of the pressure
Poisson equation:

(∇2P )n = 2
3
1
δt

(
divM∗ + divMn + 2(ρn+1 − ρn)

V

δt

)
.

The discrete Poisson equation for the pressure has a particularly simple form on a
uniform staggered grid and may be solved very efficiently using standard techniques,
such as Fourier or conjugate gradient methods.
It is well known that the second-order Adams–Bashforth scheme is weakly unsta-

ble for pure convection problems, but the strongly diffusive nature of the present
class of flame-propagation problems provides more than adequate damping, without
loss of second-order accuracy. Stability analysis, together with heuristic testing, has
shown that the behaviour of the present method is governed by classical Courant
and diffusive stability relations.

4. Test problems

A computer code called Angus has been written to solve the governing equations
using the numerical methods outlined above. The code is written in Fortran 77
and has been ported to many different workstation computers running the Unix
operating system. Parallel extensions to the code were implemented using PVM
and Cray shmem library calls by Dr D. R. Emerson at Daresbury Laboratories,
and the parallel version has been run on several distributed-memory architectures.
The principal effort has been directed towards the Cray T3D and T3E machines at
Edinburgh Parallel Computer Centre and the code has been highly optimized for
these systems. The Poisson equation for pressure is solved using a parallel conjugate
gradient method with optional MILU preconditioning, and performance in parallel
has proved to be very satisfactory.
The code has been used for a number of investigations of turbulent premixed flame

propagation. In each case, a field of homogeneous isotropic turbulence is generated
using random Fourier modes satisfying the continuity equation and a specified initial
energy spectrum E(k). A spectrum function used by Lee & Reynolds (1985) is chosen
in the form

E(k) =



γEk

2, for kmin � k � kpeak,

γEk
2
peak(k/kpeak)−5/3, for kpeak < k � kmax,

0, otherwise.
(4.1)

The three velocity components are obtained by performing an inverse Fourier trans-
form to physical space. While continuity is satisfied accurately within each finite-
difference cell, the property of isotropy is satisfied in a statistical sense only, and
some care is required given the limited sample size of large-scale eddies. The initial
field has realistic second-moment statistics but higher moment properties must be
allowed to develop. This is achieved by running the code for a short time to allow the
turbulence to become established. The governing Reynolds number of the simulation
is Re = ρ0u0l0/µ0, where l0 is the size of the box, and its value must be chosen with
care to allow adequate resolution of the smallest scales of motion. A value of Re � 50
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has proved adequate for a box size of 1283 points. Tests have been carried out to
check the properties of the non-reacting turbulent field by running simulations of
decaying isotropic turbulence in a cubic domain with periodic boundary conditions.
Results have demonstrated that the representation of the turbulence is accurate in
terms of isotropy and spectral correlations, and that the decay of turbulent kinetic
energy is well captured.
Reacting simulations require an initial flame to be specified. This is done by means

of a series of one-dimensional calculations of constant-density premixed laminar
flames, in which the parameters controlling the reaction rate (i.e. B∗, β and α)
are varied, with the Reynolds number held fixed at the value required for the tur-
bulent simulation. A laminar-flame solution is selected having a normalized burning
velocity close to unity and a well-resolved reaction zone structure. Two flames are
produced, oriented back-to-back in order to preserve the periodicity of the boundary
conditions. The chosen back-to-back flame solution is extended to three dimensions
as a pair of planar flames and is introduced into the established turbulent simulation
straddling the central x-plane of the domain.
For parallel processing, a simple domain-decomposition strategy is followed. The

entire computational domain is decomposed by assigning a spatially contiguous sub-
domain to each processor. The mapping between sub-domains and processors is a
straightforward x–y–z ordering, kept precisely the same as that used to designate
points within the computational grid. Load balancing between processors demands
that all sub-domains be of equal size, although unequal sub-domains may be accom-
modated at some penalty in parallel efficiency. Each sub-domain overlaps its neigh-
bours by one cell, forming a ‘halo’ of data that must be passed from each processor
to the next in each direction at each update. For scalar variables the transfer takes
place once per time-step, for velocity components twice per time-step, and for pres-
sure there are as many transfers as iterations within the Poisson equation solver.
The simulation proceeds with the flames responding to the turbulent environment

and becoming wrinkled and curved in three dimensions. The simulation is ended
when one or both flames is/are about to propagate out of the domain, or when
the turbulence has decayed to a point where the integral length-scale is becoming
comparable with the size of the domain.

5. Results

Results from four simulation runs are presented. The grid size was fixed at 1283 points
and the four runs are specified according to the magnitude of the initial turbulence
intensity u′/ul, which was set to 1.0, 2.0, 5.0 and 10.0 in runs 1–4, respectively. The
nominal Reynolds number was set to 30 and the Prandtl number to 0.7. The Lewis
number was fixed at unity for this series of runs, and the temperature equation (2.15)
was dropped. A field of homogeneous isotropic turbulence was generated from the
initial spectrum function with parameters kmin = 1.0, kpeak = 10.0 and kmax = 60.0,
and with γE set to match the required total energy for each run, taking values of
4.3857 × 10−6, 1.7543 × 10−5, 1.0964 × 10−4 and 4.3857 × 10−4, respectively, in
runs 1–4.
A laminar-flame profile was also computed with parameters B∗ = 480.0, β = 6.0

and α = 0.75, to yield a non-dimensional flame speed of unity. The heat release
implied by this fairly modest value of α was not fed back to the flow field and
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Table 1. Principal flow field statistics at the end of each run,
at non-dimensional time t/τ = 0.15

run number 1 2 3 4

u′/ul|t=0 1.0 2.0 5.0 10.0
k/u2

l (×10−3) 1.762 6.932 40.61 141.3
ε × τ/u2

l (×10−2) 1.993 7.883 46.78 164.8
mass fraction burned 0.283 0.283 0.287 0.298
Kolmogorov length lk/L 0.208 0.147 0.094 0.069
Taylor length λ/L 0.169 0.168 0.167 0.167
integral length lT/L 0.450 0.444 0.451 0.460

the density remained constant throughout. Each simulation was distributed over 64
nodes of the T3D machine and was run initially for 100 time-steps (non-dimensional
time t/τ = 0.01) without reaction to allow the turbulence to evolve. At this time, the
back-to-back laminar-flame solution was introduced and the simulation was contin-
ued. A dataset was obtained at each subsequent 100 time-steps containing the entire
velocity field together with the reaction-progress variable field, each dataset occupy-
ing ca. 85 Mb of disk space. Each simulation was run for a total of 1500 time-steps,
with each run requiring a total of ca. 15 hours of CPU time on the 64 processors.
The datasets were archived to tape for subsequent post-processing. Table 1 shows a
summary of the flow field statistics obtained after completion of the run. The flame
has consumed almost 30% of the mass and combustion is somewhat further advanced
in the high-turbulence cases. The turbulence kinetic energy has decayed very sub-
stantially and the dissipation rates remain in step. Integral length-scales obtained
by direct correlation show that the large-scale eddies are occupying almost half of
the box, so that the decision to stop the simulation is timely on turbulence grounds.
The Kolmogorov scale is well resolved for all cases with more than eight cells in a
Kolmogorov eddy at all times. Only directionally averaged statistics are shown, but
the Taylor and integral scales do display some evidence of anisotropy due to the
small sample of large scales present in the initial field.
It is evident from the table that the flow in the lowest turbulence case (run 1)

is almost laminar, and that run 4, having the highest turbulence, should display
the greatest degree of flame wrinkling. This is clear from figure 1, which shows the
velocity vectors and reaction-progress variable contours from the lower-left octant of
the domain, on the plane z = 0 at time t/τ = 0.15. The flame shows progressively
greater wrinkling with increased turbulence intensity. Time histories of flame prop-
agation (not shown here) demonstrate that small-scale wrinkling is imposed by the
turbulence on the flame at early times but does not persist and is removed by the
smoothing effect of flame propagation.
A principal aim of the present study is to collect statistical data on the response of

the flame surface to turbulent straining and curvature. To this end, probability den-
sity function (PDF) data have been obtained for quantities of interest in turbulent-
combustion modelling. The first step in the surface-data collection procedure is to
locate the flame surface. This is accomplished by interpolating the reaction-progress
variable c along each x-line of the grid. Cubic spline interpolation is found to be
appropriate in that it combines second-order accuracy with second-derivative con-
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Figure 1. Velocity vectors and contours of the reaction-progress variable at the end of each run,
at non-dimensional time t/τ = 0.15. A single plane (z = 0) is shown, in the left front octant of
the domain: (a) run 1 (lowest turbulence); (b) run 2; (c) run 3; (d) run 4 (highest turbulence).

tinuity. The spatial position xf corresponding to a fixed value cf of the progress
variable does not, in general, coincide with a grid point and is found using a bisec-
tion method on the interpolating function. At least two flame locations are expected
on each x-line, since the domain contains two flames oriented back-to-back in the
x-direction. Multiple intersections are possible in principle, but it is interesting to
note that the geometry constrains the total number of flame intersections on each
x-line to be even.
The first physical quantity of interest is the flame surface normal vector N , defined

on the basis of the progress variable gradient and oriented so as to point in the
direction of flame propagation, i.e.

N = − ∇c
|∇c| .

The components of the progress variable gradient are evaluated at each grid point,
using a numerical approximation to the spatial derivative that is consistent with the
scheme used in the Angus code. The components are then interpolated onto the
flame surface location xf = x(c = cf) and the normal vector is evaluated. This is
repeated for each surface point and a probability density function (PDF) is con-
structed using a standard frequency-table method. Given two flames and the size of
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Figure 2. Probability density function of the x-component of the flame surface normal, taken
at t/τ = 0.15 for each of the four runs: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

the domain, the sample size is at least 2×1282. Figure 2 shows the PDFs obtained for
the x component of the flame normal in the highest turbulence case, at t/τ = 0.15, i.e.
towards the end of the run. Different line styles indicate different choices of progress
variable location within the flame, ranging through cf = 0.1, 0.3, 0.5, 0.7 and 0.9, but
it is clear that there is no significant variation of the local normal in passing through
the flame. The two peaks in the PDF correspond to the left- and right-propagating
flames, and show that each flame surface is broadly oriented in its own direction of
propagation. The peaks do broaden as turbulence intensity is increased, but there
is a low probability of significant deviation from the mean direction of propagation,
and the mean of the x component does not fall below a value of 0.923, even for the
highest turbulence case.
The tangential strain rate aT, taken locally in the plane of the flame, is a quantity

of considerable interest in modelling due to its importance in affecting the local rate
of propagation in a turbulent flame. The strain-rate tensor,

sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

is computed at each grid point, and the tensor is then interpolated onto the flame
surface location xf . The tensor is then rotated into a coordinate system aligned with
the local flame surface normal, and the tangential strain rate aT is given by the sum
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Figure 3. Probability density function (PDF) of the tangential strain rate in the plane of the
flame surface, taken at t/τ = 0.15 for each of the four runs: (a) run 1; (b) run 2; (c) run 3;
(d) run 4.

of the strain-rate eigenvalues in the plane tangent to the flame. This procedure is
repeated at all flame surface points on both flames and a PDF is assembled. Results
are shown in figure 3 for the four runs. It is clear that the shape of the PDF is
similar for all runs, having a slight asymmetry that tends to favour positive values.
The mean is slightly positive in all cases and increases strongly with increasing
turbulence intensity, while the width of the distribution also increases with u′/ul.
This is consistent with the traditional picture of turbulence acting to stretch an
embedded surface, but the distributions also show a significant probability of negative
straining or compression of the flame.
The curvature of the flame surface may be treated in a similar manner. The gradi-

ents of the flame surface normal are evaluated and used to form a tensor ∂Ni/∂xj at
each flame surface point xf . This tensor is rotated into a coordinate system aligned
with the flame normal, and the two principal curvatures of the flame surface, h1
and h2, are obtained as eigenvalues in the tangent plane. The sign convention is
that positive curvature is defined as convex towards reactants. The mean curvature
hm = 1/2(h1 + h2) is evaluated and PDFs are shown in figure 4 for each of the four
runs. It is clear that there is a considerable spread of the PDFs according to location
within the flame. At the front of the flame, the tendency is towards higher proba-
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Figure 4. Probability density function of the mean curvature of the flame surface, taken at
t/τ = 0.15 for each of the four runs: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

bility for positive curvature, that is for the flame to curve in a sense convex towards
the reactants. Conversely, at the rear of the flame the tendency is towards higher
probability for curvature in the opposite sense, that is concave towards the reactants.
This observation can be explained with reference to Huygens’s principle, whereby the
propagation of a symmetric initial perturbation will cause it to grow preferentially in
the direction of mean propagation. Parts of the flame that are perturbed in a convex
sense will become larger and more gently curved, while parts of the flame that are
initially concave will become smaller and more tightly curved. Thus the magnitude
of the curvature will tend to be larger in negatively curved regions and smaller in
positively curved regions of the flame. The strong dependence on location within the
flame is a consequence of the finite thickness of the flame, which acts to magnify the
Huygens effect.
Assembling the joint PDF of tangential strain rate and mean curvature is straight-

forward given the data already computed on surface points. Contour plots of the joint
PDF are shown in figure 5 for the highest turbulence case (run 4) for five different
values of progress variable location cf . The joint PDF appears to be well described
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Figure 5. Joint probability density function of the tangential strain rate (x-axis) and mean
curvature (y-axis) taken at t/τ = 0.15 at five different locations within the flame. (a) c = 0.1;
(b) c = 0.3; (c) c = 0.5; (d) c = 0.7; (e) c = 0.9.

by the product of the marginal PDFs, and very little correlation between strain and
curvature is apparent. There is little variation with location through the flame. The
lack of correlation is interesting, since it appears that there is no statistical con-
nection between strain and curvature effects, at least on an instantaneous and local
basis. For modelling purposes, the implication is that strain and curvature effects
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Figure 6. Probability density function of the curvature shape factor taken at t/τ = 0.15 for
each of the four runs: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

can be treated separately. A cautionary note is that the Lewis number is unity in the
present case and a correlation has been observed in simulations of non-unity Lewis
number flames (Rutland & Trouve 1993).
Information on the flame shape may be obtained by computing the curvature shape

parameter sh, defined as the smaller of the two principal curvatures by magnitude
divided by the other (Pope et al. 1989). This quantity takes the value zero for spheres,
unity for cylinders and −1 for spherical saddle points. PDFs for the curvature shape
factor are shown in figure 6 for the four runs. Immediate conclusions for all runs are
that spherical shapes do not appear on the flame at all and that cylindrical curvature
is dominant. Spherical saddle points occur with modest probability. There is little
spread in the results through the flame. The precise mechanism behind this outcome
is not clear, but it seems likely that the flame is never curved by the turbulence with
equal magnitudes in the two principal directions. The effect of propagation is then to
reduce the curvature magnitude for convex curvature and to increase it for concave
curvature. Thus there is no tendency towards equality of curvature magnitude if
both of the initial curvatures are of the same sign. Only in the case where the initial
curvatures are of opposite sign does the possibility exist that a spherical saddle
point will evolve through propagation. Once again, the implication for modelling is
favourable, in that only one of the two curvatures appears to be important at each
surface location.

Phil. Trans. R. Soc. Lond. A (1999)



3600 S. Cant

106–2 2
vorticity (x-component)

p 
(v

or
tic

ity
)

–5–10
0

0.05

0.1

0.15

0.2

0.25

21–1 0
vorticity (x-component)

p 
(v

or
tic

ity
)

–2
0

0.2

0.6

0.4

0.8

1

1.2

20100
vorticity (x-component)

p 
(v

or
tic

ity
)

–10–20
0

0.02

0.08

0.04

0.06

0.1

0.12

0.14

40 2
vorticity (x-component)

p 
(v

or
tic

ity
)

–2–4
0

0.1

0.2

0.3

0.4

0.7

0.6

0.5

(a) (b)

(c) (d )

Figure 7. Probability density function of the x-component of the vorticity on the flame surface
taken at t/τ = 0.15 for each of the four runs: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

The cylindrical curvature of the flame surface suggests that the presence of vortices
in the turbulent-flow field may play some role in the flame–turbulence interaction
process. This was investigated by evaluating the components of the vorticity vector
ωi = ∇ × u on the flame surface. This was done in the same manner as for the
strain-rate tensor, and the surface PDF of vorticity components was produced in
the same way. Results are shown in figure 7 for the x-component of vorticity and
show a central distribution with zero mean and a variance increasing with turbulence
intensity. The y and z components show statistically identical results, demonstrating
that the vorticity on the flame surface is isotropic. Thus there is no evidence of
preferential alignment of vortices either parallel or perpendicular to the flame, at
least on the basis of results local to the flame surface.
There remains the possibility that the flame may be influenced by a vortex whose

core is at some distance from the flame surface. Direct statistical evidence for this
would require a two-point analysis, which is outside the scope of the present investiga-
tion. Nevertheless, some circumstantial evidence for vortical action at a distance may
be found by examining the interaction between strain and curvature. The hypothesis
is that the local cylindrical curvature of the flame is due to the influence of a vortex
lying parallel to the flame surface but at some distance away. The flame will then feel
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Figure 8. Probability density function of the scalar product s1 · h2 on the flame surface,
taken at t/τ = 0.15 for each of the four runs: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

the effect of the strain field that acts to stretch the vortex along its length according
to the well-known turbulent vortex-stretching mechanism. In that case, the strain-
rate eigenvector s1 associated with the larger of the two strain-rate eigenvalues in the
flame surface will align preferentially with the curvature eigenvector h2 associated
with the smaller of the two curvature eigenvalues. In other words, the flame will be
strained preferentially along the axis of its own cylindrical curvature. The relevant
eigenvalues and eigenvectors have already been computed as part of the evaluation
of strain-rate and curvature PDFs, and it is straightforward to calculate the scalar
product s1 · h2 and to assemble its PDF in the flame surface. Results for this PDF
are shown in figure 8 for each of the four runs. In all cases, the PDF shows a strong
peak at a scalar product value of unity, which indicates that these vectors do indeed
tend to align. The conclusion is that the observed cylindrical curvature of the flame
surface is due, at least in part, to the tendency of the flame to be drawn into the
strain field of nearby vortices.

6. Conclusions

Direct numerical simulations have been carried out to investigate the interaction of
a premixed flame with a turbulent field. A general formulation has been presented
and necessary simplifications have been carried out in order to render the problem
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tractable on present-day computers. Emphasis has been given to the need for numer-
ical methods suitable for use on massively parallel computers and an example of one
such approach has been outlined. Results have been presented for four simulations
carried out at different initial turbulence intensities. Quantities such as strain rates
and curvatures local to the flame surface are of considerable value in modelling and
have been obtained from the DNS results in a straightforward manner. Some useful
observations have been made concerning the statistical geometry of the flame sur-
face, and evidence has been gathered concerning a possible kinematic explanation
for the curvature of the flame.
A great deal of work remains to be done in both formulating and using DNS

in support of modelling efforts. It is generally agreed that second-order numerical
schemes represent the minimum acceptable accuracy for DNS and it is desirable
to move on to the use of higher-order methods. This will represent a considerable
challenge to designers of parallel algorithms. It is necessary to carry out many more
simulations in order to build up a picture of the variations of the quantities of interest,
such as strain rates and flame curvatures, with changes in turbulence intensities,
length-scales and parameters such as Lewis number. It is also necessary to address
the problems of including realistic chemical reaction mechanisms in three-dimensional
DNS, so that, in due course, the simulations may be truly direct in all aspects.

Financial support and computing resources for this work were provided by the EPSRC. Parallel
computing support from Dr D. R. Emerson and technical contributions from Dr W. K. Bushe
and Dr L. L. Leboucher have been essential and are gratefully acknowledged.

Nomenclature

A area
Am frequency factor for reaction step m
aT tangential strain rate
a0 speed of sound in reactants
B pre-exponential factor
B∗ non-dimensional pre-exponential factor
CV , CP specific heat capacities
c reaction-progress variable
D diffusivity of progress variable
E activation energy for progress variable
E(k) turbulence energy spectrum function
Em activation energy for reaction step m
H heat of reaction per unit mass of reactants
H(φ) convective and diffusive operator
hm mean curvature of flame surface
h2 eigenvector associated with second principal curvature
hα enthalpy of species α
k wavenumber
M Mach number
M number of reaction steps
divM mass flux divergence
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N number of species α in the mixture
N flame normal vector
nm temperature exponent for reaction step m
P pressure
Pr Prandtl number
qi heat flux vector
R0 universal gas constant
Re Reynolds number
S source term
Sc Schmidt number
sh curvature shape factor
sij strain-rate tensor
s1 eigenvector associated with first principal strain rate
T temperature
t time
u′ turbulence intensity
ui (also u, v, w) velocity components
ul laminar-flame speed
V volume
Vαi diffusion velocity of species α
Wα molar mass of species α
wα reaction rate of species α
xi (also x, y, z) spatial coordinates
Yα mass fraction of species α

α heat release parameter
β Zeldovich number
Γ general diffusivity
γ specific heats ratio
γE parameter in energy spectrum function
ε turbulence energy dissipation rate
λ thermal conductivity
µ viscosity
ν′

α,m, ν
′′
α,m stoichiometric coefficients

ρ density
τ laminar-flame passage time
τH heat release parameter
τij viscous stress tensor
φ general quantity
ωi vorticity
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